L.O. To understand factors.

Please watch this clip to revise our work on factors.

BBC Bitesize Factors

These two videos show two different methods we have used to find factors. Use the method you find the easiest.

YouTube Finding Factors Using Factor Bugs

YouTube Finding Factors Using Multiplication
Your task today is to choose one of the methods from above to complete Section A. For an extension task you can move on to Section B.

You may also need a copy of a times table grid to help you find the factors of

Multiplication Table

 these numbers.| x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 2 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
| 3 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 |
| 4 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 |
| 5 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
| 6 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 72 |
| 7 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 | 77 | 84 |
| 8 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 |
| 9 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 | 99 | 108 |
| 10 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 |
| 11 | 11 | 22 | 33 | 44 | 55 | 66 | 77 | 88 | 99 | 110 | 121 | 132 |
| 12 | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 |

5

Copy and complete the second factor in each pair.
(1) $16-2$ and \qquad
(2) $35 \rightarrow 7$ and \square
(3) $44 \rightarrow 11$ and \qquad
(4) $27 \rightarrow 3$ and
(5) $40 \rightarrow 5$ and \qquad
(6) $24 \rightarrow 8$ and \qquad
(7) $90 \rightarrow 9$ and \qquad
(8) $48 \rightarrow 6$ and \square
(9) $28 \rightarrow 4$ and \qquad
(10) $72 \rightarrow 12$ and \qquad
(11) $100 \rightarrow 2$ and \qquad
(12) $5 \rightarrow 5$ and \square
Find all the factors of the following numbers. The number of factors is shown in brackets.
13) 8 (4)
(17) 15 (4)
(14) 25 (3)
(18) 32 (6)
(15) 22 (4)
$1960(12)$
(16) 18 (6)
20) 36 (9)

If you wish to move on to an extension task - have a go at Section B.

Remember, to find factors of larger numbers, we have to use division to see whether that number is a factor.

For example,
To find the factors of 98:

- Step One: 1 and 98 is the first factor pair.
- Step Two: I know 2 will be a factor because the number is even. But I need to be able to work out what do I multiply 2 by to get to 98?
- I would find this other factor by using division. $98 \div 2=$

Using bus stop division, you can work out that $2 \times 49=98$

B

Find all the factors of:

1) 98
9. 90
(2) 52
(10) 132
(3) 66
(11) 140
(4) 63
(12) 108
(5) 48
(13) 127
(84
(14) 117
(7) 102
(15) 124
878
(16) 112.

So 2 and 49 are factors of 98.
(Please note: The times table grid does not show all of the multiplication facts each line of multiples keeps going - 98 would be in the two times table if you carried on writing the multiples of 2 up to 100.)

- Step Three: 98 is not on the times table grid in the $3 x$ table, but I would still need to check whether 3 is factor, then 4 , then 5 etc. If there is no remainder when I divide 98 by a number, I have found another factor!

To carry on with finding factors of 98, we need to be very methodical, working through possibilities in a clear order. We've found 1 is a factor and 2, now let's look at 3...

- 3 is not a factor (when we divide 98 by 3 - there is a remainder)
- 4 is not a factor (when we divide 98 by 4 - there is a remainder)
- 5 is not a factor (we know multiples of 5 end in a 5 or a 0)
- 6 is not a factor (when we divide 98 by 6 - there is a remainder)
- 7 is a factor (when we divide 98 by 7 - we find the answer is 14 . So we can say 7×14 are both factors of 98)
- 8 is not a factor (we know $8 \times 12=96$, so 98 is not in the $8 \times$ table)
- 9 is not a factor (we know $9 \times 11=99$, so 98 is not in the $9 \times$ table)
- 10 is not a factor (we know multiples of 10 end in a 0)
- 11 is not a factor (we know $11 \times 9=99$, so 98 is not in the $11 \times$ table)
- 12 is not a factor (we know $12 \times 8=96$, so 98 is not in the $12 \times$ table)
- 13 is not a factor (if we write down the $13 \times$ table, we get $7 \times 13=91$, so 98 won't be in the $13 \times$ table)
- 14 is a factor (we know this from above: $14 \times 7=98$)
- When we repeat a factor already in our list (14 is already in our list of factors) we can stop - there will be no more factors.
- So we have discovered the factors of 98 are:

$1,98,2,49,7$ and 14 .

(The order of these factors don't matter, just that we write them in a list and we don't miss any out. Always work out the factor pairs.)

Now have a go at as many of the 16 questions as you canthe more questions you cover, the more you will become factortastic!

Answers - Section A:

1. 8
2. 5
3. 4
4. 9
5. 8
6. 3
7. 10
8. 8
9. 7
10. 6
11. 50
12. 1
13. Factors of $8=1,8,2$ and 4
14. Factors of $25=1,25$ and 5
15. Factors of $22=1,22,2$ and 11
16. Factors of $18=1,18,2,9,3$ and 6
17. Factors of $15=1,15,3$ and 5
18. Factors of $32=1,32,2,16,4$ and 8
19. Factors of $60=1,60,2,30,3,20,4,15,5,12,6$ and 10
20. Factors of $36=1,36,2,18,3,12,4,9,6$

Answers - Section B:

1. Factors of:
2.
3.

$98=1,2,7,14,49,98$
$52=1,2,4,13,26,52$
$66=1,2,3,6,11,22,33,66$
4.
$63=1,3,7,9,21,63$
5.
$48=1,2,3,4,6,8,12,16,24,48$
6.
$84=1,2,3,4,6,7,12,14,21,28,42,84$
7.
8.
$102=1,2,3,6,17,34,51,102$
9.
$78=1,2,3,6,13,26,39,78$
10.
$90=1,2,3,5,6,9,10,15,18,30,45,90$
10.
$132=1,2,3,4,6,11,12,22,33,44,66,132$
11.
12.
13.
14.
$140=1,2,4,5,7,10,14,20,28,35,70,140$
$108=1,2,3,4,6,9,12,18,27,36,54,108$
$127=1$ and 127 (127 is a prime number)*
15.
16.
$117=1,3,9,13,39,117$
$124=1,2,4,31,62,124$
$112=1,2,4,7,8,14,16,28,56,112$
*We will be looking at prime numbers tomorrow. Prime numbers only have two factors - itself and 1.

