Skiing Stars WB 11.5.20

Please use this as a suggested guide to your week.

If you find any questions difficult after having had a go at it, feel free to move on to the next question. Alternatively you can email us and ask for some assistance.

For any White Rose resources it is important that you watch the accompanying White Rose guidance video before starting.

I have added additional YouTube clips to help, if needed.

Day	Monday	Tuesday	Wednesday	Thursday	Friday
Learning Objective	Area of Rectangles	Area of Compound Shapes	Equivalent Fractions	Converting Improper Fractions to Mixed Numbers	Converting Mixed Numbers to Improper Fractions
Resources	White Rose Summer Week 4 Lesson 1	See Below	White Rose Summer Week 4 Lesson 2	White Rose Summer Week 4 Lesson 3 Improper Fractions to Mixed Numbers	White Rose Summer Week 4 Lesson 3 Mixed Numbers to Improper Fractions
Other Helpful Resources Use these as additional explanations to the White Rose videos, if needed.	YouTube - Area of Rectangles		YouTube Equivalent Fractions	YouTube - Convert Improper Fractions to Mixed Numbers	YouTube - Convert Mixed Numbers to Improper Fractions
Suggested Questions	Aim to do all the questions today.	Aim to complete all question in Task 1 (find below). Challenge: Task 2	Aim to do questions 1-6. Challenge: Q7 and 8	Aim to do questions 1-5. Challenge: Q6 and 7	Aim to do questions 1-5. Challenge: Q6

Tuesday's Resources:

Area of Compound Shapes

Helpful information

Area of Rectangles	Area of Compound Shapes
The area of a rectangle on a grid: Multiply the length \times width $=6 \times 3=18$ squares. The area of a rectangle $=$ length $(\mathrm{l}) \times$ width (w).	To find the area of a compound shape, divide the shape into rectangles with known dimensions: $\begin{aligned} \text { Area } & =7 \mathrm{~cm} \times 4 \mathrm{~cm}+5 \mathrm{~cm} \times 5 \mathrm{~cm} \\ & =28 \mathrm{~cm}^{2}+25 \mathrm{~cm}^{2} \\ & =53 \mathrm{~cm}^{2} \end{aligned}$

Tuesday's Task 1

Area of Compound Shapes

First calculate the area of each rectangle.
Add the two areas together to get the total area.

1. b) $2 \mathrm{~cm} \times 5 \mathrm{~cm}=10 \mathrm{~cm}^{2}$ Area a: \qquad 4 cm^{2} Area b: \qquad 10 cm^{2} Total: 14 \qquad cm^{2}	2. Area a: \qquad cm^{2} Area b: \qquad cm^{2} Total: \qquad cm^{2}
3. Area a: \qquad cm^{2} Area b: \qquad cm^{2} Total: \qquad cm^{2}	4. Area a: \qquad cm^{2} Area b: \qquad cm^{2} Total: \qquad cm^{2}
5. Area a: \qquad cm^{2} Area b: \qquad cm^{2} Total: \qquad cm^{2}	6. Area a: \qquad cm^{2} Area b: \qquad cm^{2} Total: \qquad cm^{2}

Note: Compound shapes are not to scale.

Tuesday's Task 2

Area of Compound Shapes - Challenge

First identify the shapes where the area can be calculated - split the shape into two rectangles.
Then calculate the area of each rectangle.
Add the two areas together to get the total area.

Note: Compound shapes are not to scale.

Answers

Question	Answer		
Identify the shapes where the area can be calculated. Calculate the area of each compound shape.			
1	Area a: $\mathbf{4} \mathrm{cm}^{2}$ Area b: $\mathbf{1 0} \mathrm{cm}^{1}$ Total: $\mathbf{1 4} \mathrm{cm}^{2}$	6	Area a: $\mathbf{2 0} \mathrm{cm}^{\prime}$ Area b: $\mathbf{1 8} \mathrm{cm}^{2}$ Total $\mathbf{3 8} \mathrm{cm}^{2}$
2	Area a: $\mathbf{4} \mathrm{cm}^{2}$ Area b: $\mathbf{6} \mathrm{cm}^{2}$ Total: $10 \mathrm{~cm}^{2}$		
3	Area a: $10 \mathrm{~cm}^{2}$ Area be $3 \mathrm{~cm}^{2}$ Total: $\mathbf{1 3} \mathrm{cm}^{2}$		
4	Area a: $\mathbf{1 2} \mathrm{cm}^{2}$ Area b: $\mathbf{2 4} \mathrm{cm}^{\prime}$ Total: $\mathbf{3 6} \mathrm{cm}^{2}$		
5	Area a: $9 \mathrm{~cm}^{2}$ Area b: $\mathbf{1 0} \mathrm{cm}^{2}$ Total: $19 \mathrm{~cm}^{2}$		

Question	Answer		
1	Identify the shapes where the area can be calculated. Calcuate the area of each compound shape. $\mathbf{4 2} \mathrm{cm}^{2}$	6	Total: $\mathbf{9 6 c m}$
2	Total: $\mathbf{3 5 c \mathrm { cm } ^ { 2 }}$		
3	Total: $\mathbf{3 8} \mathrm{cm}^{2}$		
4	Total: $\mathbf{4 2} \mathrm{cm}^{\mathbf{2}}$		
5	Total: $\mathbf{3 8} \mathrm{cm}^{\mathbf{2}}$		

